Tuesday, March 8, 2016

Konversi Energi pada Solar Cell

Secara sederhana solar cell terdiri dari persambungan bahan semikonduktor bertipe p dan n ( p-n junction semiconductor ) yang jika tertimpa sinar matahari maka akan terjadi aliran electron, aliran electron inilah yang disebut sebagai aliran arus listrik.

Gambar 1. Struktur lapisan tipis solar sel secara umum

Bagian utama perubah energi sinar matahari menjadi listrik adalah absorber (penyerap), meskipu demikian, masimg-masing lapisan juga sangat berpengaruh terhadap efisiensi dari solar cell. Sinar matahari terdiri dari bermacam-macam jenis gelombang elektromagnetik yang secara spectrum dapat dilihat pada gambar 2. Oleh karena itu absorber disini diharapkan dapat menyerap sebanyak mungkin solar radiation yang berasal dari cahaya matahari.


Gambar 2. spekktrum radiasi matahari

Lebih detail lagi sinar matahari yang terdiri dari photon-photon, jika menimpa permukaaan bahan solar sel ( absorber ), akan diserap, dipantulkan atau dilewatkan begitu saja ( lihat gambar 3 ), dan hanya foton dengan level energi tertentu yang akan membebaskan electron dari ikatan atomnya, sehingga mengalirlah arus listrik. Level energi tersebut disebut energi band-gap yang didefinisikan sebagai sejumlah energi yang dibutuhkan untuk mengeluarkan elektron dari ikatan kovalennya sehingga terjadilah aliran arus listrik.

Untuk membebaskan elektron dari ikatan kovalennya, energi foton ( hc/v ) harus sedikit lebih besar atau diatas daripada energi band-gap. Jika energi foton terlalu besar dari pada energi band-gap, maka extra energi tersebut akan dirubah dalam bentuk panas pada solar sel.


Gambar 3. Berbagai perlakukan sinar matahari yang sampai pada solar cell

Tentu saja agar efisiensi dari solar cell bisa tinggi maka foton yang berasal dari sinar matahari harus bisa diserap yang sebanyak banyaknya, kemudian memperkecil refleksi dan rekombinasi serta memperbesar konduktivitas dari bahannya.


Tabel 1. band gap beberapa bahan semikonduktor

Untuk bisa membuat agar foton yang diserap dapat sebanyak banyaknya, maka absorber harus memiliki energi band-gap dengan range yang lebar, sehingga memungkinkan untuk bisa menyerap sinar matahari yang mempunyai energi sangat bermacam-macam tersebut. Salah satu bahan yang sedang banyak diteliti adalah CuInSe2 yang dikenal merupakan salah satu dari direct semiconductor.

Untuk mendapatkan daya yang cukup besar diperlukan banyak sel surya. Biasanya sel-sel surya itu sudah disusun sehingga berbentuk panel, dan dinamakan panel photovoltaic (PV). PV sebagai sumber daya listrik pertama kali digunakan di satelit. Kemudian dipikirkan pula PV sebagai sumber energi untuk mobil, sehingga ada mobil listrik surya. Sekarang, di luar negeri, PV sudah mulai digunakan sebagai atap atau dinding rumah. Bahkan Sanyo sudah membuat PV yang semi transparan sehingga dapat digunakan sebagai pengganti kaca jendela.


Gambar 4. Sistem konversi dari energi matahari hingga menjadi sumber penerangan

Artikel ini dikutip dari tulisan Brian Yuliarto PhD, Dosen Teknik Fisika ITB
Referensi
1. M. Matsumura, Utilization of Solar Cell, Lecture Notes Research Center for Solar Energy Chemistry, Osaka University 2009.
2. Smestad, Greg P. , Optoelectronics of Solar Cells. SPIE Press: Washington 2002.
3. K. West, Solar Cell Beyond Silicon, Riso International Energy Confrence, 2003.
4. M. Gratzel, Nature 414 (2001) 338.
5. S.M. Sze, Physics of Semiconductor Devices 2nd edition, Chapter 14, John Wiley and Sons 1981.
6. Wikipedia encyclopedia, Solar cell, 2005 (http://en.wikipedia.org/wiki/solar_cell)
7. C. J. Brabec, N.S. Sariciftci, J.C. Hummelen, Advanced Functional Materials, 11 (2001) 15.
8. B.A. Gregg, J. Phys. Chem. B 107 (2003) 4688.
9. Brian Yuliarto, Serba-serbi Energi, Penerbit ISTECS 2005.

No comments:

Post a Comment